
Copyright is held by the author / owner(s).
SIGGRAPH 2012, Los Angeles, California, August 5 – 9, 2012.
ISBN 978-1-4503-1435-0/12/0008

Efficient Terrain & Ocean Rendering for a Real Size Planet
Silviu S. Andrei
Glen Ellyn, USA

silviu.andrei@gmail.com

1. Introduction

Full-scale planetary rendering is a broad and active area of
research. Its uses range from games to astronomy and simulation
applications. Many problems arise when attempting to render both
high altitude and close-up scenes of a full-scale planet, especially
when the planet has an ocean surface and even more if water
surface displacement and refractions in shallow water are
required. Some of the most common problems to overcome are:
Performance (especially for close-up scenes of shallow water), Z-
fighting (between the ocean and the terrain surface in high altitude
scenes) and a seamless transition of the shorelines from high to
low altitude.
In this work I will present a visibility culling and LOD method
which is targeted to solve or minimize all of the above mentioned
problems.

2. The method

As a prerequisite I should mention that the terrain in my
implementation is maintained in a quad tree structure where each
node has 29x29 vertices and a 256x256 terrain height-map. The
same nodes are used for rendering both the terrain and the ocean
surface which is displaced by a water height-map. For the water
refractions, the scene is rendered in a traditional, two pass way.
The first pass is used to render the underwater scene in a
refraction texture and the second pass is used to render the terrain
and ocean surface.

The main problem when rendering the shorelines from high
altitude is that they will be defined by the intersection of the
ocean surface polygons and the terrain polygons which have a
very coarse level of tessellation at high altitudes. Also, the
popping effect when the nodes are split is very visible across the
shorelines because of the same reason. In order to solve this issue,
the ocean is rendered differently when viewed from high altitude.
Instead of rendering 2 surfaces, only the terrain surface is
rendered, but all vertices that lie below the sea level, are raised to
the sea level and all pixels that (according to the terrain height-
map) lie below the sea level are rendered using the water material
ID. This way, there will be no z-fighting and the shorelines will
be defined by the node’s height-map, not by the tessellation level
of the terrain nodes. Also, a transition from high altitude to
ground-view rendering is required for frames which contain both
pixels rendered using the space-view technique and pixels
rendered using the ground-view technique. This transition is
achieved by clipping out space-view pixels that are further away
from the camera than a given threshold and clipping in ground-
view pixels that are closer than the threshold. The space-view

rendering method also ignores ray bending due to refraction, but
from high altitude, the difference is negligible and therefore the
border between the two rendering methods is not visible.

A significant gain in speed is obtained by culling away geometry
that does not need to be rendered. For example, for the refraction
map, any geometry below the maximum water visibility depth or
above the maximum wave height can be clipped away; for the
terrain surface, any geometry below the minimum wave height
can be clipped away and for the ocean surface, any geometry
above the maximum wave height can also be clipped away.
These geometries can be culled in 2 stages. The first stage rejects
entire nodes on the CPU side based on the minimum and
maximum vertex height of the node and the second stage rejects
entire triangles in the geometry shader based on the triangle’s
vertices.
To accelerate rendering even more, the terrain and ocean nodes
are rendered using the same draw call. The geometry shader will
later decide if it needs to emit a triangle for the ocean surface,
terrain surface, both or let the pixel shader decide based on the
node’s terrain height-map. When the geometry shader emits a
triangle it attaches a material ID to the vertex output structure to
let the pixel shader know which rendering method to use.

Pseudo-code of the geometry shader:

if (triangle max distance to camera > distance to camera threshold)
{
 Set MaterialID to “unspecified” for all 3 vertices;
 Set each vertex height to sea level if it is below sea level;
 Emit triangle;
}
if (triangle min distance to camera < distance to camera threshold + delta)
{
 if (triangle max height > min wave height)
 {
 Set MaterialID to “terrain” for all 3 vertices;
 Emit triangle;
 }
 if (triangle min height < max wave height)
 {
 Set each vertex height to: sea level + water height-map value;
 Set MaterialID to “water” for all 3 vertices;
 Emit triangle;
 }
}

delta = number chosen to create a small overlap between the high
altitude rendering and the low altitude rendering method

(a) Refraction map (b) Terrain & Ocean (c) Final image

